Explaining forms, orientations and positions using form 1, the 2×3 rectangle

Back to definitions

All forms have a sequence number from 1 to 8. (To comfort the shocked geeks: the software that created the pages with solutions, uses 0 to 7, but this site will use 1 to 8)
 
The numbering is functional: a lower number refers to a form with with less positions on the board. 
Number 1 is the 2×3 square, which has 2 orientations. We name these orientations after the standard paper orientations:
LandscapePortrait
xx xx xx
xx xx xx
xx xx
xx xx
xx xx
 
Per orientation we will now investigate the number of positions. Starting point is the fact that the board is a rectangle of 7x7 squares. 
 
We have a look at the number positions on the very left of the board from top to bottom:
LandscapePortrait
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
So the landscape orientation has 6 positions on the left side, the portrait orientation only 5.
 
Now we have a look at the horizontal possibilities. We skip the 2 month rows, because they are shorter. 
LandscapePortrait
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Jan Feb Mar Apr May Jun xxx
Jul Aug Sep Oct Nov Dec xxx
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31 xxx xxx xxx xxx
Now the landscape orientation has 5 solutions and the portrait solution 6. Combining horizontal and vertical we get (for both portrait and landscape) 5×6=30 solution for a complete 7×7 board. But we do not have a 7×7 board; there are 6 squares missing. Each of these squares blocks a solution, so in total there are 30-6=24 solutions per orientation. Since form 1 has 2 orientations, it has a total of 2×24=48 solutions.
Let's repeat in more general terms:
An n×m rectangle with k orientations is placed in an p×p board, where q fields are missing at the side. The total number of positions is k×{(p+1-n)×(p+1-m)-q}
 
This is a bit too general, because we will be using the only A-Puzzle-A-Day, where p=7 and q=6:
The total number of positions for an n×m rectangle with k orientations is k×{(8-n)×(8-m)-6}
Sneak preview: since all the other forms are not rectangles, we will use this in a slightly adapted form in the next chapters. 

Reacties